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ABSTRACT

been drilled in the Southern German Molasse Basin. 16 of them 
have been planned and/or supervised by ERDWERK GmbH who 
supports the operator as a consultant throughout the project. One 
of the main duties of a consultant like ERDWERK GmbH is cost 
planning and time schedule forecasting for the well construction 
process. To date, these estimates have been based on a historic 
average time for the main operations which have been added up 
to the total well construction time. Uncertainties have been taken 
into account by adding a contingency factor. This approach has 
the advantage of being simple, fast and easy to communicate. 
However, it does not give any idea about the variability of the 
estimate and the risks involved, which limits its application. 
Therefore, the aim of the work presented in this paper was to 
establish a well construction model based on statistical methods 
to allow probabilistic time and cost estimation.

Firstly, a literature review on probabilistic methods in well 
planning was performed. Then a model to determine the total well 
construction time was set up. Offset data of 16 wells was gathered 
and analyzed to determine a probability function for the duration 
of each process. Morning reports were the main data source for 
this task but also rig sensor data was used. The model was fed with 
the gathered data and veri ed by comparison with real historic 
results. Trends observed in the offset data were implemented to 
model the performance mean and its variation over time. Then a 
multi-well model was established. Finally, the model was extended 
by adding costs. 

With the presented approach of well construction modeling, 
one can deliver risk assessment for geothermal wells to investors, 
insurance companies and decision makers. This will aid proper 
budgeting and the calculation of insurance premiums. Moreover, 

the modeled technical limit or best historic performance can be 
used as technical performance reference. Based on the results of 
the sensitivity analysis, the key driving forces can be identi ed. 
Therefore, optimization strategies can be steered into the right 
direction.

Introduction

Hydrothermal energy has been used in the Southern German 
Mollasse Basin for decades to supply spas with warm water. How-
ever, geothermal exploration has also targeted district heating and 
power generation on a larger scale over the last ten years. Since 
2007, activities have boomed and about 30 geothermal wells have 
been drilled in the last ve years. 1  

Depending on the temperature and production rates, the ther-
mal energy is used for power generation coupled with heating 
or, in case of lower temperatures, for heating only. A typical well 
doublet, used for a coupled system, can support 5-50 MW for 
direct use (heating) and has an electrical capacity of 5-10 MW.

ERDWERK planned and supervised 16 of those geothermal 
wells so far, which are approximately 2500 to 4500 m deep and are 
divided into 4 sections of different diameters. We can distinguish 
between two categories of wells: 

 ategory 1, where the rst section starts with 23  followed 
by 17.1/2”, 12.1/4” and 8.1/2” bit diameter.

 and ategory 2, where the rst section starts with 17.1/2” 
followed with 12.1/4”, 8.1/2” and 6.1/8” bit diameter; 

The geology in this area is generally well known (mainly 
due to data and literature from previous oil and gas exploration). 
However, drilling down to the reservoir can be challenging and 
drilling performance has been uneven in the past. To counter this, 
Rotary Steerable Systems have been applied in recently drilled 
wells (cf. [2]) and a lot of effort has been put into well designs 
which honor the lessons learned. These measures have led to a 
signi cant decrease in well delivery time and costs. However, the 
variability is still high and there is great potential for improved 
performance and saving costs. 
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Problem Definition

To date, cost planning and time schedule forecasting have 
been based on historical performance data of offset wells, whereas 
outstandingly strong or weak performance has been rejected 
and an average estimated time for the main operations has been 
summed up to the total well delivery time. By multiplying with 
the respective costs and adding the xed costs, total well costs 
have been identi ed. Uncertainties have been taken into account 
by adding a contingency factor whose value has been based on 
the engineer s subjective degree of optimism. 

This approach has the advantage of being simple, fast and 
easy to communicate. However, it does not give any idea about 
the uncertainty of that estimate which limits its application: For 
example, the estimated time schedule was used for both, budget 
planning and as technical reference for the drilling contractor. But 
from the engineer s point of view it was too conservative and no 
incentive for the well construction team. On the other hand, if 
drilling problems occurred, costs could increase rapidly and the 
forecast was too optimistic. Now one could estimate two or more 
cases (e.g. best-case, business-case or worst-case) again with the 
same deterministic method (scenario based approach). However, 
it does not deliver the probability of each case and quantitative 
risk assessment is still not possible. 

Therefore, the goal of this work was to establish a probabi-
listic well construction model, which allows the simulation of a 
time schedule forecast and the well delivery costs on a statistical 
basis. It should allow risk assessment by giving a distribution, 
their expected value, the probability of a certain value and the 
range of outcomes. 

Literature Review

In the oil & gas industry probabilistic techniques for time and 
cost planning of wells are well established. However it started 
by improving deterministic approaches by splitting up the well 
construction process in smaller operations, by de ning how their 
duration and costs depend on input variables and by simulating an 
estimate for a new well by combining the operations again whilst 
applying actual design parameters. 

For example, in 1987 Thorogood [3] described “a mathemati-
cal model for analyzing drilling performance and estimating well 
times” in the North Sea. In 1990 Shilling and Lowe [4] published 
a paper about the development of an “automatic cost estimating 
and tracking system” in the Gulf of Mexico.

Although this approach might result in a more accurate pre-
diction it does not deliver the uncertainty in the planned well 
construction costs and time. Therefore probabilistic estimations 
are necessary and there are several papers on this topic: Murtha 
(1997) [5], Williamson et al. (2004) [6] and Akins et al. (2005) 
[7] refresh concisely the theoretical background of probabilistic 
techniques. They proposed how Monte Carlo simulation can be 
used for well planning and explained its strengths, weaknesses 
and the pitfalls. Examples for practical studies are Peterson et al. 
(1993) [8], Peterson et al. (1995) [9], Kitchel et al. (1997) [10], 
Zoller et al. (2003) [11], Hariharan et al. (2006) [12], and Adams 
et al. (2009) [13]. The ideas and methods described in these papers 
provided the theoretical basis of this work. 

Modeling Drilling Time

The output variable of this first model is the Total Well 
Construction Time of one single well. This covers all processes 
between spud and logging the reservoir section. Therefore, it does 
not include for example rig-up times, stimulation, running the 
pre-holed liner, well testing and rig-down time. The Total Well 
Construction Time is broken down into sequential steps which 
will be called processes from this point on. The duration of some 
of these processes are derived from input variables and well 
design parameters. Figure 1 shows an overview of the models 
architecture.

Before the model is described in detail some de nitions are 
made regarding the nomenclature used in this paper for different 
drilling and completion activities. The term “ at time” is used in 
this paper to address time during which no depth is made. “Non-
productive time” is used for lost time due to troubles or unplanned 
events, i.e. unnecessary at time. These de nitions are made fol-
lowing the terminology de ned by Sp rker et al. in their paper 
about unplanned and invisible lost time [14, p. 1]. “On-bottom 
time” (OBT) is used for the time when depth is made (the drill 
bit is on bottom, it is rotated and mud is circulated), i.e. the total 
well construction time minus the at time. 

Processes
The processes de ned are: Drilling Hole, Logging, Condition-

ing Trip, Running Casing or Running Liner, Cementing, WOC/
BOP and Drilling Cement/Shoe. Repeatedly connecting these 
seven processes for each section describes the typical well con-
struction process without any gaps.

Figure 2 shows one sequence of these parameters in a time 
vs. depth graph. During the process Drilling Hole some at time 
occurs as well (making connections, reaming, changing the bit or 

Figure 1. Concept of modeling the total well construction time.
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BHA components, trouble time etc.). However, this at time is not 
visualized because the model does not consider the exact depth 
and duration of each at time occurrence. It is averaged over the 
whole section and therefore the graph shows a straight line which 
includes both, OBT (On bottom time) and DFT (Drilling at time).

The duration of these processes is different for each section. 
The typical geothermal well considered in this paper has 4 sec-
tions. Therefore, for each section a separate process duration has 
to be de ned (e.g. Drilling Hole Section 1, Drilling Hole Section 
2, etc.). Each of these processes has a certain start and end where 
they are linked together. The processes are chosen so that their 
starting and nishing points can be determined with morning 
reports and that no gaps between certain processes will arise. 

Input Variables and Well Design Parameters
For most of the processes the model does not consider any 

dependencies on input variables. Only the process Drilling Hole 
is a function of the input variable ROP (Rate of Penetration) and 
DFT (Drilling Flat Time). They are de ned as follows:

ROP [m/h] is the net rate of penetration. So the ROP is 
measured only when the bit is on bottom whilst it is rotated 
and mud is circulated.
DFT [h/100 m] is the time consumed for all operations 
except drilling during the drilling process normalized to 
100 m. With the knowledge of ROP and the total time to 
drill a section the DFT can be calculated. Due to the limited 
data granularity of the morning reports used to determine 
DFT it is not possible to extract individual sub-processes 
or to distinguish between non-productive time and neces-
sary at time.

In addition well design parameters have to be de ned. These are:
Casing Setting Depths (and the resulting section lengths).
Type of the Second Casing (liner, casing to surface or liner 
with tieback).

Gathering Data

The aforementioned processes and input variables, except 
ROP, have been gathered manually for each section and every well 
from morning reports. These reports have a coarse level of detail 
and the duration of different jobs are often rounded to the quarter, 
half or even full hour. In addition they are written manually and 
therefore may be prone to some degree of error. However, for this 
paper it is the only data available. For further work on this model 
also processed rig sensor data could be used (cf. [15]).

The input variable ROP [m/h], which is the average ROP for 
each section, was determined on the basis of rig sensor data. Al-
though the ROP is part of the morning reports, deriving the ROP 
from them is not reasonable because the quality of these daily 
“averaged” values is generally not reliable. 

Then the DFT [h/100 m] was calculated by knowing the total 
time t [h] to drill the section i (derived by morning reports), the 
average ROP [m/h] (derived by rig sensor data) and the length 
L [m] of this section:

  Eq. (1)

As already mentioned, all other variables have been derived 
directly from the morning reports. 

Evaluating the Deterministic Model
The next step was the evaluation of the still deterministic model. 

Therefore, the total time to drill all four sections is calculated for each 
well based on the model de ned and the offset data gathered. After 
modeling the drilling time the results were compared with the real data.  
Figure 3 shows the modeled time vs. depth curve and the real data 
of one well. 

The model should match the starting and end point of every 
section, which is ful lled quite well in the example shown. Be-
tween the starting and end point of a section, the real data cannot 
be matched because in the model ROP and DFT are averaged for 
each section.

This quality check has been performed for each well. This as-
sessment con rms both: The model set up and the data gathering 
leads to reasonable results. 

Defining Input Distributions
The next step was to assign a distribution function to every 

input variable by tting a theoretical distribution to the respec-
tive data set (parametric t). Therefore, a software tool was used. 

Incorporating Learning with Correlation Coefficients
Learning trends over time were implemented by assigning a 

correlation coef cient between the well number and the respective 
input variable like ROP or DFT. 

Figure 4 shows the result of the correlation for the input pa-
rameter ROP of the reservoir section. Trend and variance changes 
along the time scale. 

Correlation coef cients have not been assigned to variables for 
which learning is not reasonable. For example, even if Running 
Casing would correlate with the Well Number, it would not be rea-
sonable because the rig and crew changed from project to project. 

Therefore, only ROP and DFT have been considered for as-
signing correlation coef cients. As the correlation coef cients 
are derived from a limited set of data their uncertainty should be 
considered as well. This uncertainty was implemented by perform-
ing a bootstrap [16]. 
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Correlations
During the sampling process of the Monte Carlo simulation it 

is important to account for correlations between input variables. 
This means that if two variables are related to each other, the 
sampling of a relatively high value for one input variable should 
lead to a high value (or low value in case of negative correlation) 
for the second variable.

A relationship which has been investigated is the ROP between 
different sections because correlation between them is reasonable: 
Some design elements and also the skills of people involved stay 
rather constant throughout all sections. However there are other 
in uencing parameters as well, which will cover these effects if 
they are stronger. To identify correlations in offset data the Spear-
man rank correlation coef cient was calculated between the ROP 
of different sections. 

The uncertainty of the correlations is taken into account by 
implementing a bootstrap on the data (by analogy to the correla-
tions used for the learning trends). 

Other relationships like ROP-DFT or DFT-DFT were investi-
gated, but no signi cant correlation was to be found.

Modeling Multiple Wells

So far, only the single-well model has been discussed. By 
modeling multiple wells an additional consideration has to be 
taken into account, which is the correlation between several well 
outcomes. Therefore, correlations between wells within former 
projects have been studied and assigned to the model.

Modeling Drilling Costs
Modeling Time-Dependent Costs

The total time-dependent costs can be determined easily by 
multiplying the time-dependent costs of each process with the 
respective process duration. However, this implies that the time-
dependent costs stay constant during a process, which can be 
assumed for the processes de ned. 

For each process different cost positions are assigned. For 
example, during the process Drilling Hole Section 1 the following 
positions are added up:

 Rig dayrate
 Project coordination fee
 Mud engineering costs
 Directional BHA and service cost of section 1
To give another example, during the process WOC/BOP the 

following positions are added up:
 Rig dayrate (waiting mode)
 Project coordination fee
 Mud engineering costs
During a simulation run, in each iteration step, the costs are 

multiplied with the respective process duration. The costs are 
assumed to be deterministic for the purpose of this paper. This 
makes sense if the project is already in a phase where offers to 
the tender are available or contracts are already made. In this case 

the uncertainty of the cost position s value will be small. However, 
in an earlier stage of a project also costs should be handled as 
probability distributions rather than xed values.

Modeling Time-Independent Costs
The time-independent costs are summarized and assigned to 

the respective section. For this paper also the costs for completion 
and testing are handled as time independent costs because the time 
model covers only the well construction process. Therefore, the 
planned time schedule was used to determine the time-dependent 
costs which then stay constant during the simulation.

Results
Probability Distribution

Based on the model described above a Monte Carlo simulation 
was run. Figure 5 shows the resulting probability distribution of 
the total well construction time of a simulated future example 
well of Cat 2.

Time vs. Depth Curves
The model results can also be transferred to a time vs. depth 

curve. This is especially useful for a single well forecast. Figure 6 
shows a time vs. depth diagram for a well of Category 2. There 
are 6 different curves on the diagram: 
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Firstly, the “historic technical limit”: It is the sum of the 
best historic process duration of all wells. Therefore, for each 
process (e.g. Drilling Hole), the minimum value of the offset 
data is gathered and stacked together. So this curve is a mixture 
of processes from different wells. 

Then, the “best historic performance” curve is displayed, 
which is the time vs. depth curve of the well with the best 
overall outcome (normalized to the modeled casing setting 
depths). This well does not necessarily have the best perfor-
mance in all sections. Only the overall outcome was the best 
in this category.

The next three curves are the modeled P10, P50 and P90 
values as a function of depth. From the spread between these 
curves, the risk involved is indicated.

Finally, the “worst historic performance” is displayed. It is, 
in analogy of the “best historic performance”, the time vs. depth 
curve of the well with the worst overall outcome (normalized 
to the modeled casing setting depths).

Process Statistics
To get further insight into the simulation results, each pro-

cess can be analyzed separately. Figure 7 shows the P10, P50 
and P90 values of the modeled process durations. It illustrates 
clearly that the process drilling hole of Section 2 and 3 has the 
highest variability and duration. 

Single Well Cost Estimation
In analogy to the time vs. depth curve discussed above, the 

simulation results can be displayed in a drilling cost vs. depth 
curve (Figure 8). The time-independent costs of each section 
are displayed at the respective casing setting depths together 
with the time-dependent costs of the at time processes.

The costs before spud are displayed at a depth of 0 m and 
represent the costs for the rig site and rig up. Then the section 
costs are added up until the nal depth is reached. Then costs 
for completion and testing are added. 

Multiwell Cost Estimation
To estimate the total project cost the outcome of all wells 

have to be added up as discussed above. For this example, 
two wells have been simulated with a correlation coef cient 
of 0.6 between them. Figure 9 shows the probability distribu-
tion and the cumulative distribution function of the simulated 
total project costs. 

Conclusions 

The following main conclusions can be made:
 With the presented approach of well construction mod-

eling, decision makers can evaluate the risk involved 
in the well construction process. Uncertainties are ac-
knowledged and the variety of expected outcomes can 
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be communicated more effectively. The awareness of risks 
and opportunities is improved.

 Moreover, the normalized technical limit or best historic 
performance can be used as technical performance goal 
which is separated from the drilling time used for budget 
planning. This is the foundation for performance improve-
ment.

 It can also be easily assessed how good the current per-
formance is compared to other wells. This is essential for 
effective performance management.

 Building a probabilistic model also stimulates the analysis 
of offset data and the actual operational time and cost data. 
It also gives the opportunity to perform a sensitivity analy-
sis. Based on the results of the sensitivity analysis, the key 
driving forces can be identi ed. Therefore, optimization 
strategies can be steered into the right direction.

However, there are some key limitations:
 There are several assumptions made which should always 

be reported in conjunction with the model results. 
 The general approach explained in this paper may need 

some individual adjustments to assess the risk for certain 
projects. For example, factors like the well path can be 
considered by limiting the input-data to wells with similar 
well paths.

Recommendations and Outlook

The model has already been applied for a current project (bud-
geting and risk assessment) and proved its applicability. However, 
some improvements should be made in future work: 

 This model cannot deliver a high level of detail. To get a 
better understanding of how input parameters, like tripping 
speed, effect the output of the model, the data acquisition 
has to be changed or expanded. Morning reports only give a 
rough idea about these variables. Automated systems which 
recognize processes are available on the market (cf. [14]) 
and should be applied if a higher level of understanding is 
necessary.

 The in uence of parameters like rig capacity 
or well path is not captured by this model due 
to limited data. If more data is available in the 
future the model should be expanded by these 
input variables. 

 The sensitivity analysis showed clearly that DFT 
and ROP have the highest impact on the model 
result. Therefore, for drilling optimization, the 
focus should lie on the investigation of the rea-
sons for high DFT and low ROP. Rig sensor data 
analysis can be implemented to identify reasons 
for non-productive time and benchmark the per-
formance of each process (cf. [14]).

Nomenclature

BHA Bottom Hole Assembly 
ROP Rate of Penetration 
DFT Drilling Flat Time 
FIT Formation Integrity Test 
BOP Blow Out Preventer 
NPT Non-Productive Time 
MD Measured Depth 
OBT On-Bottom Time 
WOC Wait on Cement 
Cat 1 Category 1 
Cat 2 Category 2
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